

On-Crete Australia Pty Ltd

Version No: **0.3**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **27/07/2018**Print Date: **17/01/2019**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	SV55 Fastdry Aqueous Epoxy Part B	
Synonyms	Not Available	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Part B of a fastdry, long potlife, waterbourne epoxy coating system for cementitious surfaces

Details of the supplier of the safety data sheet

Registered company name	On-Crete Australia Pty Ltd
Address	4/489 Scottsdale Drive Varsity Lakes Queensland Australia
Telephone	+61 7 5593 6884
Fax	+61 7 5593 6885
Website	www.on-crete.com.au
Email	info@on-crete.com.au

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+61 406 948 465
Other emergency telephone numbers	+61 406 102 829

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	0		
Toxicity	1		0 = Minimum
Body Contact	2		1 = Low
Reactivity	0		2 = Moderate 3 = High
Chronic	2		4 = Fytreme

Poisons Schedule	Not Applicable
Classification [1]	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1

Issue Date: 27/07/2018 Print Date: 17/01/2019

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD WARNING

Hazard statement(s)

H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.

Precautionary statement(s) Prevention

P280	Wear protective gloves/protective clothing/eye protection/face protection.	
P261	Avoid breathing mist/vapours/spray.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P362	Take off contaminated clothing and wash before reuse.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7732-18-5	30-60	<u>water</u>
55965-84-9	<1	isothiazolinones, mixed
7631-99-4	<1	sodium nitrate
107-98-2	<10	propylene glycol monomethyl ether - alpha isomer
100-51-6	<10	benzyl alcohol
9046-10-0	<10	polypropylene glycol bis(2-aminopropyl ether)

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

Wash out immediately with fresh running water.

• Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

Page 3 of 18

Issue Date: 27/07/2018 Print Date: 17/01/2019

	 Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.		
Advice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. May emit poisonous fumes. May emit corrosive fumes. 		
HAZCHEM	Not Applicable		

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures ONLY

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. • Clear area of personnel and move upwind. • Alert Fire Brigade and tell them location and nature of hazard. • Wear breathing apparatus plus protective gloves. • Prevent, by any means available, spillage from entering drains or water course.

- ▶ Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- ► Collect recoverable product into labelled containers for recycling.
- ▶ Neutralise/decontaminate residue (see Section 13 for specific agent).
- ► Collect solid residues and seal in labelled drums for disposal.
- · Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- ▶ Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

Safe handling

Conditions for safe storage, including any incompatibilities

Suitable container

- Polyethylene or polypropylene container.
- ▶ Packing as recommended by manufacturer.
- · Check all containers are clearly labelled and free from leaks.

Storage incompatibility

None known

Must not be stored together

— May be stored together with specific preventions

- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure	propylene glycol monomethyl	Propylene glycol	100 ppm /	553 mg/m3 /	Not	Not
Standards	ether - alpha isomer	monomethyl ether	369 mg/m3	150 ppm	Available	Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
sodium nitrate	Sodium nitrate	4.1 mg/m3	45 mg/m3	270 mg/m3
propylene glycol monomethyl ether - alpha isomer	Propylene glycol monomethyl ether; (Ucar Triol HG-170)	100 ppm	160 ppm	660 ppm

Version No: 0.3

SV55 Fastdry Aqueous Epoxy Part B

Issue Date: **27/07/2018**Print Date: **17/01/2019**

benzyl alcohol	Benzyl alcohol	30 ppm	52 ppm	740 ppm
polypropylene glycol bis(2- aminopropyl ether)	Polyoxyalkyleneamine; (Poly(oxypropylene)diamine)	0.73 mg/m3	8 mg/m3	48 mg/m3

Ingredient	Original IDLH	Revised IDLH
water	Not Available	Not Available
isothiazolinones, mixed	Not Available	Not Available
sodium nitrate	Not Available	Not Available
propylene glycol monomethyl ether - alpha isomer	Not Available	Not Available
benzyl alcohol	Not Available	Not Available
polypropylene glycol bis(2- aminopropyl ether)	Not Available	Not Available

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- ▶ lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Fragrance substance with is an established contact allergen in humans.

Scientific Committee on Consumer Safety SCCS OPINION on Fragrance allergens in cosmetic products 2012

for propylene glycol monomethyl ether (PGME)

Odour Threshold: 10 ppm.

The TLV-TWA is protective against discomfort caused by odour, against eye and skin irritation, and chronic effects (including possible liver and kidney damage).

Individuals exposed to 100 ppm reported a transient unpleasant odour with slight eye irritation after about 1 or 2 hours. At 300 ppm, mild irritation of the eyes and nose developed within 5 minutes; some individuals found the irritation hardly bearable after about an hour. A concentration of 750 ppm was highly irritating. Signs of central nervous system depression developed at 1000 ppm. Neurological, clinical chemical and general medical examinations showed no other conspicuous toxicity.

Concentrations of the beta-isomer, 2-methoxy-1-propyl acetate are low in commercial grades of PGME and teratogenic effects associated with this isomer are expected to be absent.

Odour Safety Factor(OSF)

OSF=10 (propylene glycol monomethyl ether)

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Appropriate engineering controls

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

Chemwatch: 9-567097 Issue Date: 27/07/2018 Page 6 of 18 Version No: 0.3 Print Date: 17/01/2019

SV55 Fastdry Aqueous Epoxy Part B

solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- ▶ Safety glasses with side shields.
- ► Chemical goggles.
- ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Hands/feet protection

Eye and face protection

Skin protection See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact.
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

Chemwatch: 9-567097 Page 7 of 18 Issue Date: 27/07/2018 Version No: 0.3 Print Date: 17/01/2019

SV55 Fastdry Aqueous Epoxy Part B

Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection Barrier cream. Skin cleansing cream.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

▶ Eye wash unit.

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

SV55 Fastdry Aqueous Epoxy Part B

Material	СРІ
BUTYL	A
NATURAL RUBBER	С
NEOPRENE	С
NITRILE	С
PVA	С
PVC	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	White		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available

Chemwatch: 9-567097 Page 8 of 18

Issue Date: 27/07/2018 Version No: 0.3 Print Date: 17/01/2019 SV55 Fastdry Aqueous Epoxy Part B

pH (as supplied)	10	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	1.03 Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Liquid	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Miscible	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Page 9 of 18

SV55 Fastdry Aqueous Epoxy Part B

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute

Issue Date: 27/07/2018

Print Date: 17/01/2019

quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis. NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into Eye the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications Chronic following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death. IRRITATION TOXICITY SV55 Fastdry Aqueous **Epoxy Part B** Not Available Not Available TOXICITY IRRITATION water Oral (rat) LD50: >90000 mg/kg^[2] Not Available TOXICITY IRRITATION dermal (rat) LD50: >1008 mg/kg^[1] Not Available isothiazolinones, mixed Oral (rat) LD50: 53 mg/kg^[2] TOXICITY IRRITATION sodium nitrate dermal (rat) LD50: >5000 mg/kg^[1] Not Available Oral (rat) LD50: 1267 mg/kg^[2] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Eye (rabbit) 230 mg mild propylene glycol Inhalation (rat) LC50: 12485.7375 mg/l/5h.d^[2] Eye (rabbit) 500 mg/24 h. - mild monomethyl ether - alpha isomer Oral (rat) LD50: 3739 mg/kg^[2] Eye (rabbit): 100 mg SEVERE Skin (rabbit) 500 mg open - mild TOXICITY IRRITATION Dermal (rabbit) LD50: 2000 $mg/kg^{[2]}$ Eye (rabbit): 0.75 mg open SEVERE benzyl alcohol Inhalation (rat) LC50: >4.178 mg/l/4h[2] Skin (man): 16 mg/48h-mild Oral (rat) LD50: 1230 mg/kg^[2] Skin (rabbit):10 mg/24h open-mild IRRITATION polypropylene glycol TOXICITY bis(2-aminopropyl ether) Dermal (rabbit) LD50: 250 mg/kg^[2] Eye (rabbit): 100 mg - SEVERE

Chemwatch: 9-567097 Page 10 of 18 Issue Date: 27/07/2018 Version No: 0.3 Print Date: 17/01/2019

SV55 Fastdry Aqueous Epoxy Part B

	Oral (rat) LD50: 242 mg/kg ^[2]	Eye (rabbit): SEVERE ***
		Skin (rabbit): SEVERE ***
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

ISOTHIAZOLINONES, MIXED

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis

PROPYLENE GLYCOL **MONOMETHYL ETHER -ALPHA ISOMER**

NOTE: For PGE - mixed isomers: Exposure of pregnant rats and rabbits to the substance did not give rise to teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rats but not in rabbits at this concentration; maternal toxicity was noted in both species.

For benzyl alkyl alcohols:

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy.

For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur. Mutagenicity: All chemicals showed no mutagenic activity in in vitro Ames tests. Various results were obtained with

other in vitro genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity in vivo. While some mixed and/or equivocal in vitro chromosomal/chromatid responses have been observed, no genotoxicity was observed in the in vivo cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vitro and in vivo genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts.

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

BENZYL ALCOHOL

Chemwatch: 9-567097 Page 11 of 18
Version No: 0.3

SV55 Fastdry Aqueous Epoxy Part B

Issue Date: **27/07/2018**Print Date: **17/01/2019**

A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption, metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances.

All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The substances in this group:

- contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group
- the major pathway of metabolic detoxification involves hydrolysis and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate
- they show a consistent pattern of toxicity in both short- and long- term studies and
- they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays.

The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives.

In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases. Hydrolysis of benzyl and benzoate esters to yield corresponding alcohols and carboxylic acids and hydrolysis of acetals to yield benzaldehyde and simple alcohols have been reported in several experiments. The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid. Flavor and Extract Manufacturers Association (FEMA)

The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles.

The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity.

At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal.

With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low.

NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels.

No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or a-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were negative.

It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients. The Research Institute for Fragrance Materials (RIFM) Expert Panel

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However.

their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations.

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used

Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology

POLYPROPYLENE GLYCOL BIS(2-AMINOPROPYL ETHER) Chemwatch: 9-567097 Page 12 of 18 Issue Date: 27/07/2018

Version No: 0.3 SV55 Fastdry Aqueous Epoxy Part B Print Date: 17/01/2019

http://doi.org/10.5487/TR.2015.31.2.105

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Convulsions, stomach ulceration, haemorrhage, respiratory tract changes, dermatitis after systemic administration recorded. * Reichard ** Bayer Inc. Canada *** Texaco ****Epoxylite

SV55 Fastdry Aqueous Epoxy Part B & ISOTHIAZOLINONES, MIXED & BENZYL ALCOHOL The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur.

Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes.

Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water.

Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure.

SV55 Fastdry Aqueous Epoxy Part B & BENZYL ALCOHOL

Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear.

Axillae Bilateral axillary (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy.

Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic.

Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and

Chemwatch: 9-567097 Page 13 of 18 Issue Date: 27/07/2018
Version No: 0.3 Print Date: 17/01/2019

SV55 Fastdry Aqueous Epoxy Part B

benzaldehyde have also been reported . The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested , but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil.

Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare.

General/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis.

Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways.

Prohaptens

Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal.

The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases. UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin. These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity. QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha betaunsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such

for propylene glycol ethers (PGEs):

the metabolic activation

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the

SV55 Fastdry Aqueous
Epoxy Part B &
PROPYLENE GLYCOL
MONOMETHYL ETHER ALPHA ISOMER

Issue Date: **27/07/2018**Print Date: **17/01/2019**

PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to non-irritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members.

One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

WATER & ISOTHIAZOLINONES, MIXED

No significant acute toxicological data identified in literature search.

ISOTHIAZOLINONES,
MIXED & SODIUM
NITRATE &
POLYPROPYLENE
GLYCOL BIS(2AMINOPROPYL ETHER)

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity

×

Carcinogenicity

Chemwatch: 9-567097 Page 15 of 18

Issue Date: 27/07/2018 Version No: 0.3 Print Date: 17/01/2019 SV55 Fastdry Aqueous Epoxy Part B

Skin Irritation/Corrosion	✔	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: 🗶 – Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

SV55 Fastdry Aqueous	ENDPOINT	TEST DURATION (HR)		SPECIES VALUE		SOURCE	
Epoxy Part B	Not Available Not Available			Not Available Not Av		ailable Not Available	
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE
water	LC50	96	Fish	Fish		897.520mg/l	L 3
	EC50	96	Algae or other aquatic plants		S	8768.874mg	/L 3
	ENDPOINT	TEST DURATION (HR)	SPECIE	3		VALUE	SOURCE
	LC50	96	Fish			0.129mg/L	2
isothiazolinones, mixed	EC50	48	Crusta	cea		0.007mg/L	2
	EC50	72	Algae	r other aquatic plan	ts	0.0063mg/l	_ 2
	NOEC	48	Algae	r other aquatic plan	ts	0.00049mg	/L 2
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE
	LC50	96	Fish			2	
sodium nitrate	EC50	48	Crustac	Crustacea 3-581mg/L		2	
	EC50	96	Algae or other aquatic plants 1181.887mg/L		/L 3		
	NOEC	2880	Fish 1.6mg/L		4		
	ENDPOINT	TEST DURATION (HR)	SPEC	ES		VALUE	SOURCE
	LC50	96	Fish	Fish >=1-mg/L		ı/L 2	
propylene glycol	EC50	48	Crustacea >=1-mg/L		ı/L 2		
onomethyl ether - alpha isomer	EC50	96	Algae	Algae or other aquatic plants >1-mg/L		L 2	
isomei	EC0	48	Crustacea >=1-mg/L		ı/L 2		
	NOEC	48	Crus	Crustacea >=1-mg/L		/L 2	
	ENDPOINT	TEST DURATION (HR)	SPECIE	S		VALUE	SOURCE
	LC50	96	Fish	Fish 10mg/L		2	
benzyl alcohol	EC50	48	Crusta	Crustacea 230mg/L		2	
- /	EC50	96		Algae or other aquatic plants 76.828mg/L			
	NOEC	336	Fish 5.1mg/L		2		
	ENDPOINT	TEST DURATION (HR)	SPECIE	s		VALUE	SOURCE
	LC50	96	Fish	Fish 772.14mg/L		/L 2	
polypropylene glycol pis(2-aminopropyl ether)	EC50	48	Crusta	cea		80mg/L	2
ammopropyromer)	EC50	72	Algae	or other aquatic plar	nts	2.1mg/L	2
	NOEC	72	Al	or other aquatic plar		0.32mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Chemwatch: **9-567097** Page **16** of **18**

Version No: 0.3 SV55 Fastdry Aqueous Epoxy Part B

Issue Date: **27/07/2018**Print Date: **17/01/2019**

Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
water	LOW	LOW
sodium nitrate	LOW	LOW
propylene glycol monomethyl ether - alpha isomer	LOW (Half-life = 56 days)	LOW (Half-life = 1.7 days)
benzyl alcohol	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
water	LOW (LogKOW = -1.38)
sodium nitrate	LOW (LogKOW = 0.209)
propylene glycol monomethyl ether - alpha isomer	LOW (BCF = 2)
benzyl alcohol	LOW (LogKOW = 1.1)

Mobility in soil

Ingredient	Mobility
water	LOW (KOC = 14.3)
sodium nitrate	LOW (KOC = 14.3)
propylene glycol monomethyl ether - alpha isomer	HIGH (KOC = 1)
benzyl alcohol	LOW (KOC = 15.66)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- ▶ Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ullet It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).

Page 17 of 18

SV55 Fastdry Aqueous Epoxy Part B

Issue Date: **27/07/2018**Print Date: **17/01/2019**

▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

Not Applicable

HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

ISOTHIAZOLINONES, MIXED(55965-84-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous

Chemicals

SODIUM NITRATE(7631-99-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons

(SUSMP) - Appendix E (Part 2)

PROPYLENE GLYCOL MONOMETHYL ETHER - ALPHA ISOMER(107-98-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons

(SUSMP) - Appendix B (Part 3)

BENZYL ALCOHOL(100-51-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous

Australia Inventory of Chemical Substances (AICS)

Chemicals

POLYPROPYLENE GLYCOL BIS(2-AMINOPROPYL ETHER)(9046-10-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous

Australia Inventory of Chemical Substances (AICS)

Chemicals

National Inventory Status

National Inventory	Status
Australia - AICS	No (isothiazolinones, mixed)
Canada - DSL	Yes
Canada - NDSL	No (benzyl alcohol; polypropylene glycol bis(2-aminopropyl ether); propylene glycol monomethyl ether - alpha isomer; isothiazolinones, mixed; water; sodium nitrate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (polypropylene glycol bis(2-aminopropyl ether); isothiazolinones, mixed)
Japan - ENCS	No (isothiazolinones, mixed)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	No (isothiazolinones, mixed)

Chemwatch: 9-567097 Page 18 of 18 Issue Date: 27/07/2018

Version No: 0.3 SV55 Fastdry Aqueous Epoxy Part B Print Date: 17/01/2019

Yes = All ingredients are on the inventory

Legend: No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	27/07/2018
Initial Date	27/07/2018

Other information

Ingredients with multiple cas numbers

Name	CAS No
isothiazolinones, mixed	55965-84-9, 96118-96-6
polypropylene glycol bis(2- aminopropyl ether)	9046-10-0, 1026024-57-6, 1054590-29-2, 111775-27-0, 1141889-83-9, 122896-82-6, 1233085-13-6, 124364-29-0, 125956-82-3, 1352480-48-8, 1422196-16-4, 157766-64-8, 1624579-56-1, 168569-34-4, 188051-38-9, 53124-95-1, 74434-34-7, 9045-47-0, 9057-16-3, 9064-12-4

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.