Issue Date: **20/05/2020**Print Date: **20/05/2020**

ONCRETE

Lithiseal+

On-Crete Australia Pty Ltd

Version No: 1.5

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **20/05/2020**Print Date: **20/05/2020**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Lithiseal+
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Densifier and dust reducer for cementitious surfaces

Details of the supplier of the safety data sheet

Registered company name	On-Crete Australia Pty Ltd	Oncrete New Zealand Pty Ltd		
Address	4/489 Scottsdale Drive Queensland 4227 Australia	15A Vega Place, Rosedale Auckland 0632 New Zealand		
Telephone	one +617 5593 6884 +649 930 8829			
Fax	Not Available Not Available			
Website	www.on-crete.com.au	www.oncrete.co.nz		
Email	sales@on-crete.com.au	sales@oncrete.co.nz		

Emergency telephone number

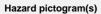
Association / Organisation	On-Crete Australia Pty Ltd	Oncrete New Zealand Pty Ltd		
Emergency telephone numbers	1300 292 504	0800 120 854		
Other emergency telephone numbers	+613 6121 9073	+649 553 8356		

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS


	Min	Max	
Flammability	0		
Toxicity	0		0 = Minimum
Body Contact	2	1	1 = Low
Reactivity	0		2 = Moderate 3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable
Classification [1]	Eye Irritation Category 2A, Skin Corrosion/Irritation Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Page 2 of 14

Lithiseal+

Issue Date: **20/05/2020**Print Date: **20/05/2020**

SIGNAL WORD

WARNING

Hazard statement(s)

H319	Causes serious eye irritation.
H315	Causes skin irritation.

Precautionary statement(s) Prevention

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

P321	Specific treatment (see advice on this label).
P362	Take off contaminated clothing and wash before reuse.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313	If eye irritation persists: Get medical advice/attention.
P302+P352	IF ON SKIN: Wash with plenty of water.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name		
7732-18-5	89.8	<u>water</u>		
7631-86-9	7.2	silica amorphous		
12627-14-4	3	lithium polysilicate		

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Description of mist aid in	cusures
Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Version No: 1.5 Page 3 of 14

Lithiseal+

Issue Date: **20/05/2020**Print Date: **20/05/2020**

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- ▶ Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.
Advice for firefighters	
Fire Fighting	 When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

Not Applicable

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Print Date: 20/05/2020 Lithiseal+

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked
- ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- ▶ Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- ▶ Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

Safe handling

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- ▶ Polyethylene or polypropylene container.
- ▶ Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.

Silicas:

- react with hydrofluoric acid to produce silicon tetrafluoride gas
- react with xenon hexafluoride to produce explosive xenon trioxide
- reacts exothermically with oxygen difluoride, and explosively with chlorine trifluoride (these halogenated materials are not commonplace industrial materials) and other fluorine-containing compounds
- may react with fluorine, chlorates
- re incompatible with strong oxidisers, manganese trioxide, chlorine trioxide, strong alkalis, metal oxides, concentrated orthophosphoric acid, vinyl acetate
- ▶ may react vigorously when heated with alkali carbonates.

None known

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

1						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fume (thermally generated) (respirable dust)	2 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Silica gel	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Issue Date: 20/05/2020

(uncalcined)

amorphous

Lithiseal+

Australia Exposure silica 0.05 Not Not Silica, fused Not Available Standards amorphous mg/m3 Available Available (a) This value is for inhalable dust Australia Exposure silica Silica - Amorphous: 10 Not Not containing no asbestos and < 1% Standards amorphous Precipitated silica mg/m3 Available Available crystalline silica. Silica - Amorphous: (a) This value is for inhalable dust Australia Exposure silica 10 Not Not containing no asbestos and < 1% Diatomaceous earth Standards Available Available

mg/m3

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
silica amorphous	Silica gel, amorphous synthetic	18 mg/m3	200 mg/m3	1,200 mg/m3
silica amorphous	Silica, amorphous fumed	18 mg/m3	100 mg/m3	630 mg/m3
silica amorphous	Siloxanes and silicones, dimethyl, reaction products with silica; (Hydrophobic silicon dioxide, amorphous)	120 mg/m3	1,300 mg/m3	7,900 mg/m3
silica amorphous	Silica, amorphous fume	45 mg/m3	500 mg/m3	3,000 mg/m3
silica amorphous	Silica amorphous hydrated	18 mg/m3	740 mg/m3	4,500 mg/m3

Ingredient	Original IDLH	Revised IDLH
water	Not Available	Not Available
silica amorphous	3,000 mg/m3	Not Available
lithium polysilicate	Not Available	Not Available

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
lithium polysilicate	E	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

MATERIAL DATA

For amorphous crystalline silica (precipitated silicic acid):

Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms.

The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic

IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)

Issue Date: 20/05/2020 Print Date: 20/05/2020

crystalline silica.

Version No: 1.5 Page 6 of 14 Issue Date: 20/05/2020 Print Date: 20/05/2020

Lithiseal+

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge 1-2.5 m/s (200-500 (active generation into zone of rapid air motion) f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity 2.5-10 m/s (500-2000 f/min.) into zone of very high rapid air motion).

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material.
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher $(breakthrough\ time\ greater\ than\ 240\ minutes\ according\ to\ EN\ 374,\ AS/NZS\ 2161.10.1\ or\ national\ equivalent)\ is$ recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the

manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection ▶ Barrier cream. ► Skin cleansing cream. ► Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Lithiseal+

Material	СРІ
BUTYL	A
NEOPRENE	A
VITON	A
NATURAL RUBBER	С
PVA	С

^{*} CPI - Chemwatch Performance Index

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water = 1)	1.06
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	10	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	<10
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Version No: 1.5 Page 8 of 14

Lithiseal+

Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	2260	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts. When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content

Issue Date: 20/05/2020 Print Date: 20/05/2020

Page 9 of 14 Issue Date: 20/05/2020 Print Date: 20/05/2020

Lithiseal+	TOXICITY	IRRITATION	
Litniseai+	Not Available	Not Available	
,	TOXICITY	IRRITATION	
water	Oral (rat) LD50: >90000 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye (rabbit): non-irritating *	
silica amorphous	Inhalation (rat) LC50: >0.139 mg/l/14h**[Grace] ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 3160 mg/kg ^[2]	Skin (rabbit): non-irritating *	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
lithium polysilicate	dermal (rat) LD50: >5000 mg/kg[1]	Not Available	
	Oral (rat) LD50: 2500 mg/kg ^[1]		
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS.		
	Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

SILICA AMORPHOUS

Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS]

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

LITHIUM POLYSILICATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For silica amorphous:

Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d.

In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Lithiseal+ & SILICA **AMORPHOUS**

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was

Issue Date: **20/05/2020**Print Date: **20/05/2020**

detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet. Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) =1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity. For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

WATER & LITHIUM POLYSILICATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Lithiseal+	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
water	LC50	96	Fish	897.520mg/L	3
	EC50	96	Algae or other aquatic plants	8768.874mg/L	3
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-289.09mg/L	2
silica amorphous	EC50	48	Crustacea	ca.7600mg/L	1
	EC50	72	Algae or other aquatic plants	440mg/L	1
	NOEC	720	Crustacea	34.223mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-108mg/L	2
Pale Source of the Physics	EC50	48	Crustacea	>220mg/L	2
lithium polysilicate	EC50	72	Algae or other aquatic plants	207mg/L	2
	EC0	72	Algae or other aquatic plants	35mg/L	2
	NOEC	96	Fish	>=100mg/L	2
Legend:	3. EPIWIN Su	ite V3.12 (QSAR) - Aquatic Toxicit	e ECHA Registered Substances - Ecotoxicolo y Data (Estimated) 4. US EPA, Ecotox databa IITE (Japan) - Bioconcentration Data 7. METI	se - Aquatic Toxicity D	ata 5.

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Version No: **1.5**Page **11** of **14**Issue Date: **20/05/2020**Print Date: **20/05/2020**

Lithiseal+

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

For silica amorphous:

Amorphous silica is chemically and biologically inert. It is not biodegradable. Due to its insolubility in water there is a separation at every filtration and sedimentation process.]

Crystalline and/or amorphous silicas are ubiquitous on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment. The rate of SAS released into the environment during the product life cycle is negligible in comparison with the natural flux of silica in the environment

Untreated SASs have a relatively low water solubility of 1.91 to 2.51 mmol/l (114 - 151 mg/l) and an extremely low vapour pressure (e.g. < 10–3 Pa at 20° C for Aerosil R972). On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment, slightly into water, and probably not at all into air.

With surface-treated SASs, the addition of organosilicon compounds increases the hydrophobicity. Consequently, the water solubility is lower than that of untreated silica. The vapour pressure remains extremely low. Due to the presence of organic substances such as surfactants, salts, acids and alkalis in the environment, it is expected that surface-treated silica will be wetted and then adsorbed onto soils or sediments.

SAS is regarded as an inert substance and is not expected to undergo any transformation in the atmospheric or terrestrial compartment, apart from dissolution by water.

Biodegradability in sewage treatment plant or in surface water is not applicable to inorganic substances like SAS. Therefore the biodegradation endpoint has limited relevance for SAS. In surface modified SASs, the most common treating agents are organosilicon compounds and these generally represent less than 5% of the material. Biodegradation in sewage treatment plant or in surface water is not expected. Some biodegradation in soil may occur by analogy with the behaviour of linear polydimethylsiloxane in this compartment

Ecotoxicity:

Based on available data, SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment.

When hydrophilic SASs (Aerosil 200 and Ultrasil VN3; purity 100% and 98%, respectively), were tested for their acute toxicity to fish and crustaceans, the LC50 and EC50 values were higher than 10,000 mg/l and 1,000 mg/l, respectively.

The zebra fish (*Brachydanio rerio*) test was performed with SAS in suspension, due to the insolubility of the SAS. No mortality was observed for the fish after 96 hours of exposure at 1,000 mg/l and 10,000 mg/l. The test media remained turbid throughout the test, indicating that the limit of solubility of the product was exceeded

With the water flea (*Daphnia magna*), SAS suspensions exceeding the limit of solubility were tested.; some immobilisation was observed. However, no significant immobilisation was observed when a solution filtered through microfibre glass filter was tested. The observed effects were likely caused by physical hampering of the *Daphnia* due to the presence of undissolved particles.

A surface-treated SAS (Aerosil R974; 99.9% pure) was tested on fish and crustaceans. The LC50 to fish and EC50 to *Daphnia* were found to be higher than 10,000 mg/l and 1,000 mg/l, respectively

The EC50 to algae was found to be higher than 10,000 mg/l filtered suspension The actual dissolved concentrations were not determined. There was no inhibition of the biomass or of the growth rate with the 10,000 mg/l filtered suspension.

The antibacterial effect of pressed and unpressed high purity SAS (Aerosil, unspecified) (0.2 g silica + 0.15 ml bacteria strain suspension) kept at 22 C has been investigated (SAS is sometimes pressed to remove air before transportation). The following micro-organisms were studied: *Escherichia coli. Proteus* sp., *Pseudomonas aeruginosa*, *Aerobacter aerogenes*.

Micrococcus pyrogenes aureus, Streptococcus faecalis, Streptococcus pyrogenes humans, Corynebacterium diphtheria, Candida albicans and Bacillus subtilis. The SAS was contaminated either by hand contact, by saliva droplets or by contact with the atmosphere. Rodshaped gram-negative organisms (Escherichia coli. Bacterium proteus. Pseudomonas aeruginosa

and Aerobacter aerogenes) died between 6 hours and 3 days in contact with unpressed SAS. Gram-positive micro-organisms were somewhat more resistant. In addition, the tests demonstrated that survival of bacteria was shorter in unpressed than in pressed SAS.

For silica:

The literature on the fate of silica in the environment concerns dissolved silica in the aquatic environment, irrespective of its origin (man-made or natural), or structure (crystalline or amorphous). Indeed, once released and dissolved into the environment no distinction can be made between the initial forms of silica. At normal environmental pH, dissolved silica exists exclusively as monosilicic acid [Si(OH)4]. At pH 9.4 the solubility of amorphous silica is about 120 mg SiO2/I. Quartz has a solubility of only 6 mg/l, but its rate of dissolution is so slow at ordinary temperature and pressure that the solubility of amorphous silica represents the upper limit of dissolved silica concentration in natural waters. Moreover, silicic acid is the bioavailable form for aquatic organisms and it plays an important role in the biogeochemical cycle of Si, particularly in the oceans.

In the oceans, the transfer of dissolved silica from the marine hydrosphere to the biosphere initiates the global biological silicon cycle. Marine organisms such as diatoms, silicoflagellates and radiolarians build up their skeletons by taking up silicic acid from seawater. After these organisms die, the biogenic silica accumulated in them partly dissolves. The portion of the biogenic silica that does not dissolve settles and ultimately reaches the sediment. The transformation of opal (amorphous biogenic silica) deposits in sediments through diagenetic processes allows silica to re-enter the geological cycle. Silica is labile between the water and sediment interface.

Ecotoxicity:

Fish LC50 (96 h): Brachydanio rerio >10000 mg/l; zebra fish >10000 mg/l Daphnia magna EC50 (24 h): >1000 mg/l; LC50 924 h): >10000 mg/l

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
water	LOW	LOW
silica amorphous	LOW	LOW

Ingredient	Bioaccumulation
water	LOW (LogKOW = -1.38)
silica amorphous	LOW (LogKOW = 0.5294)

Mobility in soil

Ingredient	Mobility
water	LOW (KOC = 14.3)
silica amorphous	LOW (KOC = 23.74)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

WATER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

SILICA AMORPHOUS IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Issue Date: **20/05/2020**Print Date: **20/05/2020**

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

LITHIUM POLYSILICATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (water; lithium polysilicate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (lithium polysilicate)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	No (lithium polysilicate)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	20/05/2020
Initial Date	03/05/2018

SDS Version Summary

Version	Issue Date	Sections Updated
0.5.1.1.1	20/05/2020	Physical Properties, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$

 ${\sf PC-STEL} : {\sf Permissible\ Concentration-Short\ Term\ Exposure\ Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Version No: 1.5

Lithiseal+

Parggee 104 outf 1144 Issue Date: 20/05/2020 Print Date: 20/05/2020

Powered by AuthorITe, from Chemwatch.